
PHYSICAL REVIEW E 67, 056126 ~2003!
Bifurcation and stability analysis of rotating chemical spirals in circular domains:
Boundary-induced meandering and stabilization
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Recent experimental and model studies have revealed that the domain size may strongly influence the
dynamics of rotating spirals in two-dimensional pattern forming chemical reactions. Hartmannet al. @Phys.
Rev. Lett.76, 1384~1996!#, report a frequency increase of spirals in circular domains with diameters substan-
tially smaller than the spiral wavelength in a large domain for the catalytic NO1CO reaction on a microstruc-
tured platinum surface. Accompanying simulations with a simple reaction-diffusion system reproduced the
behavior. Here, we supplement these studies by a numerical bifurcation and stability analysis of rotating spirals
in a simple activator-inhibitor model. The problem is solved in a corotating frame of reference. No-flux
conditions are imposed at the boundary of the circular domain. At large domain sizes, eigenvalues and eigen-
vectors very close to those corresponding to infinite medium translational invariance are observed. Upon
decrease of domain size, we observe a simultaneous change in the rotation frequency and a deviation of these
eigenvalues from being neutrally stable~zero real part!. The latter phenomenon indicates that the translation
symmetry of the spiral solution is appreciably broken due to the interaction with the~now nearby! wall.
Various dynamical regimes are found: first, the spiral simply tries to avoid the boundary and its tip moves
towards the center of the circular domain corresponding to a negative real part of the ‘‘translational’’ eigen-
values. This effect is noticeable at a domain radius ofR,Rcr,1 . The spiral subsequently exhibits an oscillatory
instability: the tip trajectory displays a meandering motion, which may be characterized asboundary-induced
spiral meandering. A systematic study of the spiral rotation as a function of a control parameter and the domain
size reveals that the meandering instability in large domains becomes suppressed, and the spiral rotation
becomes rigid, at a critical radiusRcr,0 . Boundary-induced meandering arises below a second critical radius
Rcr,2,Rcr,0 .

DOI: 10.1103/PhysRevE.67.056126 PACS number~s!: 05.65.1b
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I. INTRODUCTION

Rotating spiral waves constitute one of the most comm
spatiotemporal patterns observed in two-dimensional n
equilibrium systems. They have been observed experim
tally in a wide variety of systems including heterogeneo
catalytic reactions (CO1O2 /Pt, NO1CO/Pt, etc.!, liquid
phase reactions@such as the famous Belousov-Zhabotins
~BZ! reaction#, slime mold aggregation, and electrical acti
ity on cardiac tissue. Their ubiquitous presence has gener
a widespread interest in the study of their dynamical beh
ior among physicists, biologists, and applied mathematici
@1–7#.

The experimental investigations of spiral waves in ear
years almost exclusively concentrated on the BZ sys
@8,9#. The reaction can be carried out easily in a petri d
~batch! or using a continuous setup. More recently, extens
interesting observations have been made on the CO ox
tion system@10#. One motivation for the study of spiral
comes from cardiology; the breakup of isolated spiral wa
of electrical activity in cardiac tissue into disorganized ex
tations is deemed to play an important role in fibrillation@4#.

Particlelike spiral interaction has been studied in the co
plex Ginzburg-Landau equation by various authors. Con
versial ideas about the range of the interaction force h
been published. While early work favored a 1/r decay
@11,12#, more extensive recent analysis and simulations p
1063-651X/2003/67~5!/056126~7!/$20.00 67 0561
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towards an exponential decay@13#. Another important issue
deals with formation of symmetric spiral pairs or spontan
ous symmetry breaking and decay of one of two spirals in
interaction event. A related problem~the interaction of spi-
rals with a reflecting mirror wall in a circular geometry! has
been studied in reaction-diffusion models for excitable m
dia, as we will discuss below. Kinematical theory predicts
1/r correction to the rotation frequency@14#, while a differ-
ent approach yields a superexponential correction@15#.

Experiments on a catalytic surface in small circular d
mains and corresponding simulations are documented in
@17#. Additional information is provided by a recent exper
mental report@18#. These studies show a particular stro
effect of the domain size on the spiral’s rotation frequen
for weak excitability where the kinematic theory is vali
Simulations in this regime show a 1/r correction, see Ref
@17#, as predicted by kinematical arguments@14#. The super-
exponential effects in the limit of high excitability@15# pre-
dict only weak changes in the rotation frequency. All the
retical results are based on some oversimplification
realistic models. Numerical simulation can give an appro
mate picture, but more accurate results can be obtained
means of numerical stability analysis of spirals as sho
below. In this paper, we focus on qualitative changes of s
ral wave behavior rather than on quantitative predictions
the cited articles. This is achieved by employing numeri
bifurcation and stability analysis rather than with dire
simulations~see the Ref.@16# for a more detailed presenta
tion!. In particular, we find that simple rotating spirals a
©2003 The American Physical Society26-1
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BÄR, BANGIA, AND KEVREKIDIS PHYSICAL REVIEW E 67, 056126 ~2003!
destabilized due to boundary effects for small doma
~boundary-induced meandering!, while spiral meandering is
suppressed at intermediate domain sizes. Before we e
into the topic of numerical stability analysis of spirals
small domains, we review briefly the general properties
rotating spirals in Sec. II and provide a description of t
methodology in Sec. III. In Sec. IV, results on the bounda
induced meandering at small domain sizes are presen
while Sec. V deals with the restabilization of large doma
meandering spirals at intermediate domain sizes. A brief
cussion in the last section concludes the paper.

II. DYNAMICS OF ROTATING SPIRALS

Most theoretical studies of spiral waves have cente
around two limiting cases. The free boundary approach
first introduced by Fife@5,19# and later extensively investi
gated by others, see Refs.@6,20–25#. A simple kinematic
theory in terms of motion of curves was first sketched
1946 by Wiener and Rosenblueth@26# and later carried ou
by Zykov and Mikhailov @3,27#. Although the analytical
work has contributed to a significant advancement in
understanding of spiral wave behavior, certain aspects of
behavior are better understood through computer-ass
analysis. Numerical investigations of the dynamics of sp
waves have been carried out for a variety of reacti
diffusion systems@28–32#.

It is worthwhile to summarize the essential features of
two-parameter bifurcation diagram of spiral wave dynam
in a generic model of excitable media first described
Zykov @1#. The diagram is ‘‘generic’’ in the sense that mo
two-parameter investigations of spiral dynamics in other
citable systems have shown similar states and transiti
This diagram was obtained by Winfree@2# in a detailed nu-
merical study of the FitzHugh-Nagumo~FHN! equations,
which read

] tu5¹2u1u2
u3

3
2v, ~1!

] tv5e~u1b2gv !. ~2!

The parameterg was fixed at 0.5 and numerical simulation
were conducted to observe types of spiral wave behavio
the FHN model. The bifurcation or ‘‘phase’’ diagram in th
two control parameters (e,b) is divided into five distinct
regions representing different dynamical states, separate
curves of bifurcation loci. Whenb ande are large, no wave
propagation is possible in the FHN system. Here the med
is not sufficiently excitable to support waves and all init
conditions evolve to a spatially uniform state. The curve]P
denotes the ‘‘boundary of propagation’’; planar waves ex
in the system above this curve. The curve]R denotes the
‘‘rotor boundary’’; the system supports rotating wave so
tions above this curve. A good representation of the dyna
ics near the]R boundary is the evolution of a broken wav
segment of a planar wave@3#. In the region between]P and
]R, broken wave tips retract as they propagate along stra
lines. Above the]R curve, an initial broken segment curls u
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and evolves into a rotating spiral wave. Spirals exist in
region bounded by]R and]M curves, and are characterize
by rigid rotation around a fixed point. Tip motions of rigidl
rotating spirals form circles. The radius of the tip path, spi
period, and spiral wavelength all diverge as the boundary]R
is approached in the parameter space. The curve]M denotes
the ‘‘meandering boundary’’ and is associated with the tra
sition from rigidly rotating spirals to meandering motion
the spiral core. Using a similar model of excitable med
Barkley@7# showed that]M is a single smooth locus of Hop
bifurations of rotating spirals. The tip paths of the meand
ing spirals ~more specificallymodulated rotating waves!
form flowerlike patterns characterized by two temporal f
quencies. Finally, the region to the right of the]C curve is
characterized by dynamics that are more complicated t
two-frequency quasiperiodic, and possibly even chao
These states are termed by Winfree as ‘‘hypermeanderin

Although accurate time-dependent numerical simulatio
constitute a useful tool for analysis, many problems can
tackled more efficiently through detailed linear stability a
bifurcation analysis.

III. COMPUTATIONAL LINEAR STABILITY ANALYSIS
OF SPIRALS

Spiral waves are solutions to the governing reactio
diffusion equations with a rotational symmetry; they appe
stationary in a frame rotating with the frequency of the wa
~for a description of the method used here, see also R
@33#!. Consequently, they can be computed as steady s
of the following reaction-diffusion equations in polar coord
nates:

05] tu5F~u![f~u!1D¹2u1v]uu, ~3!

whereu5(u,v)T, D5diag(1,0), andf(u) represents the ki-
netic terms of a modified Barkley model with delayed inhib
tor production@28,31#,

f~u!5„2e21u~u21!@u2~v1b!/a#,u32v…T.

The last term on the right-hand side of Eq.~3! comes from
the rotating frame of reference (v is the appropriate angula
velocity!. This model is qualitatively similar to the
FitzHugh-Nagumo model@Eqs. ~1! and ~2!#, but posesses
three fixed pointsu05(u0 ,v0)T with f(u)50. One is the
stable rest state (u0 ,v0)5(0,0) of the excitable medium
while the two other fixed points~a saddle and a focus! are
unstable and result from the repeated intersection of
nullcline curvesu5(v1b)/a andu35v in the u-v plane.

The boundary conditions on a circular domain of radiusR
are taken to be no flux in the radial direction (] ruuR50).
The system defined by Eq.~3! has a continuum of solution
~given by all arbitrary rotations of the spiral! and the addi-
tional unknownv. This indeterminacy is removed and
unique steady solution is picked out by fixing the rotation
phase of the spiral~here atr 5R/2,u5p). This is done by
appending an additional pinning condition given by

]uvur 5R/2,u5p50, ~4!
6-2
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BIFURCATION AND STABILITY ANALYSIS O F . . . PHYSICAL REVIEW E 67, 056126 ~2003!
which allows for determining the unique value ofv along
with a particular rotation of the spiral shape.

The stability of the steady stateū of Eqs.~3! and~4! with
respect to small perturbations is determined by the follow
linearized eigenvalue problem:

DF~ ū!U5lU, ~5!

where

DF~ ū!5Df~ ū!1D¹21v]u , ~6!

while l andU are the eigenvalues and the eigenmodes of
linearized operatorDF(ū). The eigenvaluesl determine the
linear stability of the spiral solution; a bifurcation is ind
cated when a real eigenvalue or a complex conjugate pa
imaginary eigenvalues cross into the right half of the co
plex plane.

Equations~3! are now discretized on a polar grid, whe
we can split the Laplace operator in an azimuthal and a ra
part ¹2u(r ,u)5¹ r

2u(r ,u)1¹u
2u(r ,u). The radial and azi-

muthal contributions are then given by

¹u
2u~r ,u!5

1

r 2

]2

]u2
u~r ,u!, ~7!

¹ r
2u~r ,u!5

1

r

]

]r
u~r ,u!1

]2

]r 2
u~r ,u!. ~8!

The concentration fieldsu andv are then expanded in Fou
rier modes in the azimuthal direction and discretized w
second-order finite differences to evaluate the operator
the radial direction. The boundary conditions atr 5R are
taken to be no-flux in the radial direction]u„(r ,u)/]r …ur 5R
50. The boundary condition atr 50 is taken to be zero-flux
as well, while the singularity in the first term in Eq.~8! has
been treated using l’Hoˆpital’s rule. Spatial discretization
yields a set of ordinary differential equations~ODEs! de-
scribing the time evolution of coefficients of the discretiz
tion of the concentration variables. Most results repor
here were obtained by takingNr551 radial grid points and
30 Fourier modes in the azimuthal direction withNu5128
collocation points. Such a discretization results in a dyna
cal system of;6000 ODEs.

This system of ODEs is stiff and explicit time integratio
methods are plagued by stability constraints. We perfo
transient simulations of the discretized system with the h
of the stiff ODE solver ODESSA@35#, which employs vari-
able~adaptive! step size with up to fifth-order backward di
ference formulas.

Dynamical systems of this size are prohibitive for the ro
tine stability and bifurcation algorithms based on direct so
ers. We employ large scale, iterative methods that have
cently been developed and applied to matrix eigenproble
@36–38#. The steady state problem is solved using Newto
method which can be accelerated by the use of Krylov-ba
iterative solution methods for linear systems@39#. Pseudo-
arclength continuation techniques are then utilized to foll
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the branch of spiral wave solution as the parameter va
are varied. This continuation scheme is robust to the p
ence of folds in the spiral branch and traces the solut
branch into parameter regions where the solution is unsta
The stability of the spiral solution is monitored by findin
the leading eigenvalue~those with the largest real part, clos
to the imaginary axis! and corresponding eigenvectors
each continuation step. The leading eigenpairs are comp
using an iterative Arnoldi method with implicit deflatio
@36–38#.

At first glance it appears that three of the eigenvalues
the linearized eigenproblem~5! lie on the imaginary axis;
they are associated with the symmetries in the infinite,
bounded system. Figure 1 shows the spatial plots of the
responding eigenmodes. The gray scale value in these p
represents the variableu. The eigenvalue at zerolR arises
from the rotational symmetry of the spiral wave. The ro
tionally symmetric eigenmode can be shown to be simply
azimuthal derivative of the concentration field,UR5]uū.
Furthermore, a spiral wave in an infinite medium can
arbitrarily translated on the plane. In a frame rotating w
the frequencyv, this results in a complex eigenpair atlT
56 iv @7,34#. The real and complex parts of the correspon
ing eigenmodes can be shown to be thex andy derivatives of
the concentration fieldUT5]xū6 i ]yū. This eigenpair is
‘‘descended from’’ the infinite medium problem, and if th
distance between spiral core and boundary is large, the
nite box’’ eigenvalues have real part very close to zero.

Indeed, the presence of no-flux boundaries in a finite
main atr 5R breaks the translational symmetry of the spi
on the plane. However, for a sufficiently large domain si

FIG. 1. Eigenmodes due to symmetry@34#: ~a! v concentration
field of a rotating spiral wave; the parameters aree50.025, a
50.8, b50.02, R510, ~b! eigenmode resulting from rotationa
symmetry,~c! and ~d! real and imaginary parts of the eigenmod
associated to the translational symmetry. The gray scale value
resents the variableu; darker regions correspond to higher values
u and vice versa.
6-3
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BÄR, BANGIA, AND KEVREKIDIS PHYSICAL REVIEW E 67, 056126 ~2003!
the eigenvalues associated with the translational symm
are numerically very close to their values for an infinite
extended domainlT506 iv @7#. The deviation of Re(lT)
from zero is a measure of how much the boundaries ‘‘infl
ence’’ the spiral core. Thus, the eigenvalueslT quantify, in a
sense, the interaction of the rotating spiral with the bound
Since the spiral is centered in the circular domain, any tra
lation will move it towards the boundary and should pro
the force between the spiral and the zero-flux bound
which can be considered a~curved! mirror wall. All other
eigenvalues have negative real parts in our study; instab
here arises only from the interaction with the boundary
pressed inlT .

IV. SPIRAL INSTABILITY IN SMALL CIRCULAR
DOMAINS

Spirals in spatially extended domains select a unique
of values for their frequencyv and spatial wavelengthl
depending on the control parameterse, a, and b in our
model, respectively,e,g, andb in the FHN system. Recen
work has shown that the presence of boundaries can sig
cantly affect the behavior of waves in confined geometr
The presence of sharp corners may cause spiral nucle
from planar waves@40#, while existing spirals are predicte
to drift along the boundaries@41#. A number of experiments
probe the dynamics of spirals near a boundary in
Belousov-Zhabotinsky reaction@42–44# and find a measur
able force that leads to meandering drift along the bound
The effect of domain size on rotating waves has rece
been studied experimentally by Hartmannet al. @17# for the
NO1CO reaction on a microstructured Pt~100! surface. The
frequency of rotating waves was observed to increase
stantially for domain sizes below a critical domain size~that
depends on the spiral wavelength in large domains! due to
the interaction of the wave tip with the boundary. A line
increase in the spiral frequency with inverse domain size
analytically predicted by Davydov and Zykov@14# and sup-
ported by numerical simulations@17#. Furthermore, close to
the onset of appreciable frequency increase, a transitio
quasiperiodic spirals was observed in simulations. After t
transition, the spiral core is observed to drift near the bou
ary; we refer to this phenomenon as boundary-induced
andering. It is intimately linked to the boundary-induced dr
studied in large domains@42–44#. Both phenomena resu
from the breaking of translational symmetry by the prese
of a boundary.

The stability analysis performed here is for a spiral th
rotates around the center of a circular domain. In this se
small domains result in small distances between the cente
rotation and the boundary. If the interaction with the boun
ary destabilizes the rotation of the spiral, we observe sp
tip trajectories that qualitatively closely resemble the on
found in meandering spirals in large domains. Hence,
chose the term boundary-induced meandering instead
boundary-induced drift. We used the model introduced in
preceding section. Time evolution of a suitable initial con
tion was performed to obtain an initial spiral wave for
circular domain of sizeR55 units. Dimensionless param
05612
ry

-

y.
s-

y,

ty
-

et

ifi-
s.
ion

e

y.
ly

b-

s

to
is
-

e-
t

e

t
p,
of
-
al
s
e
of
e
-

eters were taken in the typical excitable regime, ase50.025,
a50.8, b50.02. Thewavelength of a spiral in a large do
main for these conditions is about 9.1. Starting from an i
tial guess of the spiral and its period, steady state contin
tion of the spiral solution was performed using the dom
sizeR as the bifurcation parameter.

The bifurcation diagram of the spiral solution branch
displayed in Fig. 2~a! where the spiral period is plotte
against the domain size. Figures 2~b! and 2~c! display the
real and imaginary parts of the eigenvalue pair that is as
ciated with the translational symmetry of the spiral in t
unbounded medium. When the domain size is above a c
cal valueRcr,1 , the spiral frequency remains essentially i
dependent of the domain size. Note thatRcr,1 is less than half
of the ‘‘large domain spiral wavelength,’’ in line with the
observations in simulations of the standard Barkley mo
reported in Ref.@17#. Furthermore, the eigenvalues corr
sponding to the~broken! translational symmetry are indee
close to the translational eigenvalues for a spiral in an i
nite medium,lT.06 i2p/T. Therefore, the value ofRcr,1
gives a lower bound on the domain size above which
domain boundaries do not appreciably influence the sp
core.

For R,Rcr,1 the spiral period is observed to decrease n
tably. As R decreases further, the eigenvalue pair associa
with the broken translational symmetrylT is seen to move
appreciably into the left half of the complex plane. The
exists another critical radiusRcr,2 such that for domain size
in between the two limits (Rcr,2,R,Rcr,1) the eigenvalue

FIG. 2. Bifurcation diagram of a spiral wave in a circular d
main with respect to the domain size. The periodT is plotted as a
function of the radiusR. The parameterse, a, andb are the same as
in Fig. 1. A qualitative sketch of the branch of meandering spir
below the Hopf bifurcationH f ~as observed in direct numerica
integrations! is given. The bottom two plots show the real an
imaginary parts of the eigenvalue pair that, in infinte domains
associated with the translational symmetry.
6-4
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BIFURCATION AND STABILITY ANALYSIS O F . . . PHYSICAL REVIEW E 67, 056126 ~2003!
pair lT lies in the stable region@Re(lT),0#. In this regime,
spirals that are either perturbed away from the center or
tiated off-center are attracted towards the center of the
main. At R5Rcr,2 , the eigenvalues that smoothly desce
from the translational symmetry cross the imaginary a
into the right half plane indicating a Hopf bifurcation. Th
stable solution after this bifurcation is a quasiperiodic spi
This Hopf bifurcation marks the onset of boundary-induc
meandering.

We observed that the quasiperiodic spiral solution pers
down to a certain cutoff domain sizeRcr,3 below which the
medium does not support any stable rotating waves. The
stable spiral branch, when continued further down inR turns
around in a saddle-node~SN! bifurcation atRSN and then
proceeds to collide with a spatially uniform steady sta
namely, the one corresponding to the unstable focus, at s
critical domain sizeRcr,4 , see Fig. 2~a!. The latter result
implies that for radiiR with RSN,R,Rcr,4 , two unstable
rotating wave solutions coexist. The lower branch separ
the rest state of the medium from the upper spiral branch
is reminiscent of the recently observed unstable nucleus
spiral pair in large domains@45#.

V. TRANSITION TO MEANDERING SPIRALS

We demonstrated in the preceding section that the in
ence of the boundaries in smaller domains causes a qu
eriodic instability of the spiral core. The eigenmodes cor
sponding to this instability are the ones originating fro
breaking the translational symmetry of the spirals in an
bounded domain. We refer to this instability as bounda
induced meandering. Spirals in extended domains are kn
to exhibit another qualitatively different type of transition
quasiperiodic motion. Barkley@7# showed that this ‘‘infinite
domain’’ meandering transition is caused by a Hopf bifurc
tion of a set of isolated eigenvalues~that aredifferent from
the eigenvalues corresponding to the translational inv
ance!. This instability will be referred to as ‘‘regular mean
dering’’ or just ‘‘meandering.’’ The eigenvector correspon
ing to the regular meandering instability was shown to de
radially outward@7#. The bifurcations that give rise to th
two different instabilities will be termed boundary Hop
(Hb) and meandering Hopf (Hm), respectively. The
meandering-Hopf transition also causes a quasiperiodic
tion of the spiral tip which exhibits complex flowerlike mo
tions in the domain.

Figure 3 shows the bifurcation scenario of the spiral
lution in a circular domain keepingR55 constant and using
e as the control parameter. The remaining parameters
fixed as before ata50.8, b50.02. The stable spiral branc
has a Hopf bifurcation~marked asHm in Fig. 3! as e is
increased beyond a critical value where an isolated com
eigenpair crosses into the right half plane. A stable branc
meandering spirals arises at this Hopf bifurcation. At
slightly higher value ofe, the meandering branch retrac
and disappears via another Hopf bifurcation as the isola
pair of eigenvalues returns to the left half plane. The sp
solution is then stable for a narrow interval ine. The spiral
period increases monotonically for increasinge and the
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boundaries of the domain start eventually to affect the sp
core. This causes the complex eigenvalue pair associ
with the broken translational symmetry to moveaway from
the imaginary axis into the left half plane. At this poin
spirals that are kicked off the center, or initiated off-cent
are attracted towards the middle of the domain. At the po
marked asHb in Fig. 3, the eigenpair associated with th
broken translational symmetry crosses the imaginary a
into the unstable right half plane causing the bounda
induced meandering of the spiral. The unstable spiral bra
when continued further up ine turns around in a saddle-nod
bifurcation and terminates at a spatially uniform steady s
of the system at some critical value ofe. This uniform state

FIG. 4. Two-parameter numerical bifurcation diagram of rot
ing spiral waves in finite domains. The curvesHm , Hb , and SN
represent the meandering-Hopf bifurcation, the boundary-indu
meandering related Hopf bifurcation, and saddle node of spir
respectively. TheHm and Hb curves define the critical radiiRcr,0

andRcr,2 . The variously marked regions support stable spirals (S),
regular meandering spirals~M1!, boundary-induced meanderin
spirals~M2!, and no rotating waves (N).

FIG. 3. Bifurcation diagram of a spiral wave solution forR
55, a50.8, b50.02. The solid and dashed lines indicate sta
and unstable spirals. The filled circles denote quasiperiodic sp
while the unfilled square denotes a spatially uniform state. The s
bolsHb , Hm , and SN stand for boundary-Hopf, meandering-Ho
and saddle-node bifurcations, respectively.
6-5
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BÄR, BANGIA, AND KEVREKIDIS PHYSICAL REVIEW E 67, 056126 ~2003!
corresponds to an unstable fixed point in the local dynam
Next we free both the parameterse and R in the model

and study how the two Hopf transitions are organized in
(e,R) parameter space. The two-parameter bifurcation d
gram is displayed in Fig. 4, and was assembled by perfo
ing several one-parameter continuation runs at both cons
R and constante cuts. The curves corresponding to th
meandering-Hopf bifurcation, the boundary-Hopf bifurc
tion, and saddle node of spirals are marked asHm , Hb , and
SN, respectively. The regions represent stable rotating sp
(S), regular meandering spirals~M1!, boundary-induced me
andering spirals~M2!, and no rotating waves (N), respec-
tively. These results show that regular meandering is s
pressed by the influence of the boundary conditions u
decreasing the domain radius. At still smaller domain ra
boundary-induced meandering appears.

VI. DISCUSSION

We have studied computationally certain features of
dynamics of rotating spirals in small two-dimensional d
mains by numerical bifurcation and stability analysis. F
lowing Barkley’s earlier work@7#, we found that these spiral
rotate around the center of a circular domain and compu
them as steady states of the reaction-diffusion equations
corotating frame. The stability is inferred from an iterati
determination of the largest eigenvalues of the equations
rt

.
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earized around the spiral solution. For large domains,
obtain three eigenvalues with practically zero real part, a r
one for rotation symmetry and a complex conjugate pair
~slightly broken! translational symmetry in the plane. Fo
decreasing domain size, the real part of the complex co
gate pair becomes negative, indicating a repulsive interac
with the ~mirror! boundary. At even smaller domain size
the real part starts to grow and finally becomes positive
dicating a boundary-induced meandering instability. Furth
more, it was observed that regular meandering in large
mains can be suppressed due to boundary effects. At
parameter values bounding their existence, spirals were
served to disappear in saddle-node bifurcations.

Numerical stability analysis of spirals in circular domai
is useful in quantifying the interaction between a spiral a
the domain boundary. This can lead to a better understan
of the instabilities and bifurcations of spirals in small d
mains. Similar computer-assisted studies might be helpfu
analyzing related problems, such as the interaction of a sp
pair in a small domain~as observed by Hartmannet al. @18#
in a catalytic surface reaction!.
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